Abstract

Coprocessing reactions with waste plastics, petroleum residues and coal were performed to determine the individual and blended behavior of these materials using lower pressure and cheaper catalysts. The plastic used in this study was polypropylene. The thermodegradative behavior of polypropylene (PP) and PP/petroleum residues/coal blends were investigated in the presence of solid hydrocracking (HC) catalysts. A comparison among various catalysts has been performed on the basis of observed temperatures. The higher temperatures of initial weight loss of PP shifted to lower values by the addition of petroleum residues and coal. The catalysts were also tested in a fixed-bed micro reactor for the pyrolysis of polypropylene, petroleum residues and coal, alone and blended together in nitrogen and hydrogen atmosphere. High yields of liquid fuels in the boiling range 100–480°C and gases were obtained along with a small amount of heavy oils and insoluble material such as gums and coke. The results obtained on the coprocessing of polypropylene with coal and petroleum residues are very encouraging as this method appears to be quite feasible to convert plastic materials into liquefied coal products and to upgrade the petroleum residues and waste plastics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.