Abstract

The demonstrations of visible-light-driven chemical transformations on plasmonic metal nanostructures have led to the emergence of a new field in heterogeneous catalysis known as plasmonic catalysis. The excitement surrounding plasmonic catalysis stems from the ability to use the excitation of energetic charge carriers (as opposed to heat) to drive surface chemistry. This offers the opportunity to potentially discover new, more selective reaction pathways that cannot be accessed in temperature-driven catalysis. In this Review, we provide a fundamental overview of plasmonic catalysis with emphasis on recent advancements in the field. It is our objective to stress the importance of the underlying physical mechanisms at play in plasmonic catalysis and discuss possibilities and limitations in the field guided by these physical insights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call