Abstract

The transesterification of jojoba oil with methanol has been studied in the presence of various catalysts i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), dibutyltin diacetate (C4H9)2Sn (OOCCH3)2, dioctyltin diacetate (C8H17)2Sn (OOCCH3)2, dibutyltin oxide (C4H9)2SnO, dioctyltin oxide (C8H17)2SnO, diphenyltin oxide (C6H5)2SnO, monobutyltin chloride dihydroxide ((C4H9)Sn(OH)2Cl) and monobutyltin hydroxide oxide hydrate ((C4H9)Sn(=O)OH⋅xH2O), with % age conversion of oil into biodiesel was 84.5%, 61.3%, 92.6%, 25.4%, 22.0%, 23.3%, 12.0%, 2.15% and 1.05%, respectively. The optimization of experimental parameters was established to achieve maximum yield of the product by using dibutyltin diacetate (C4H9)2Sn (OOCCH3)2. The physical and fuel properties of jojoba biodiesel like density, dynamic viscosity, kinematic viscosity, pour point, cloud point, flash point, and acid number were determined by ASTM procedures and were found to be comparable to ASTM standards for diesels. The synthesis of jojoba seed oil biodiesel (JSOB) was confirmed by FT-IR and NMR (1H and 13C) analyses of both oil and biodiesel. Chemical composition of fatty acid methyl esters (FAMEs) in jojoba biodiesel was established by GC–MS analysis and verified by retention time data and mass fragmentation pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call