Abstract
Catalytic conversion of hydrocarbons occurring at metal nanoparticles in porous pellets is often accompanied by the formation of coke in the form of growing heterogeneous film-like aggregates or carbon nanofilaments. The latter processes result in deactivation of metal nanoparticles. The corresponding kinetic models imply the formation and growth of film-like coke aggregates. Herein, I present an alternative generic kinetic model focused on the formation and growth of carbon nanofilaments. These processes are considered to deactivate metal nanoparticles and reduce the rate of reactant diffusion in pores. In this framework, the kinetically limited reaction regime is described by simple analytical expressions. The diffusion-limited regime can be described as well but only numerically. The model presented can be used for interpretation of experimental results.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.