Abstract

Lactic acid (LA) is a potential platform chemical that can be produced from lignocellulosic biomass. The development of a cost-competitive, catalytic-based LA production system is gaining significant attention in modern biorefineries. A series of experimental study was carried out to investigate the chemocatalytic effect of the conversion of oil palm empty fruit bunch (EFB) fibers into lactic acid under hydrothermal conditions. Synthesis of chemicals from lignocellulosic biomass involves complex mechanisms because of the complex composition of the biomass. Therefore, experimental parameters, i.e., temperature, Pb(II) concentration, and reaction time were studied. It was found that production of LA is highly dependent on the experimental conditions. In this study, the highest LA yield obtained from EFB fibers was > 46% (230 °C, 2 mM Pb(II) after 4 h of reaction). However, a similar yield can be achieved either using higher Pb(II) and shorter reactions time or vice versa. The selective production of chemical compounds (glucose, 5-hydroxymethyl furfural (5-HMF), furfural, levulinic acid, and lactic acid) from EFB fibers is highly dependent on the availability of Pb(II) ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call