Abstract

Bio-oil has complex compositions and high oxygen content, which restricts its high-value utilization. Commercial activated carbon (AC) and HY zeolite were used as composite catalysts to study their effect on pyrolysis volatiles from rice straw and poplar sawdust by changing the mixing modes of two catalysts. The results showed that the loading modes of AC and HY zeolite obviously affected the products distribution and bio-oil components. The lowest yield of bio-oil was obtained when HY zeolite and AC were mechanically mixed at a mass ratio of 1:1 (YACM). But the loading mode of YACM was beneficial to the deoxidation and aromatic hydrocarbon generation. Under the mode of YACM, the aromatics content in rice straw and poplar sawdust bio-oil can be increased from 13.8% and 8.0% without catalyst to 56.4% and 53.1%, respectively. However, the layered loading with upper HY zeolite and lower AC (YTACL) was favorable for formation of phenolic compounds. The selectivity to monocyclic and bicyclic aromatic hydrocarbons followed the order of YTACL > ACTYL > YACM, and YACM > ACTYL > YTACL, respectively. Compared with HY zeolite, AC catalyst possessed smaller pore size and fewer acidity, and the active sites of AC were conducive to rearrangement of furan compounds to generate cyclopentanone, 2-cyclopentenone and methyl-cyclopentenone, and further rearrangement to form phenol. Therefore, the loading mode of YTACL exhibited a promotion effect on the formation of phenol, cresol, toluene, ethylbenzene and p-xylene. The strong acidic sites of HY zeolite were favorable for the aromatization, so the loading mode of ACTYL had good selectivity to the formation of naphthalene, methylnaphthalene, anthracene and pyrene. This work will provide a guide for products regulation from biomass pyrolysis and enrich aromatics and phenols in bio-oil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.