Abstract

With increasing concern for reducing CO2 emission and alleviating fossil resource dependence, catalytic transformation of 5-hydroxymethylfurfural (HMF), a vital platform compound derived from C6 sugars, holds great promise for producing value-added chemicals. Among several well-established catalytic systems, hydrogenation and oxidation processes have been efficiently adopted for upgrading HMF. This Review covers recent advances in the development of thermocatalytic conversion of HMF into value-added chemicals. The advances of metal-catalyzed hydrogenation, hydrogenolysis, ring-opening, decarbonylation, and oxidation involving selective activation of C-O, C=O, and C=C groups are described. The roles played by nature of metals, supports, additives, synergy of metal-acid sites, and metal-support interaction are also discussed at the molecular level. Finally, an outlook is provided to highlight major challenges associated with this huge research area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call