Abstract

The surface reaction products liberated during the atomic layer deposition (ALD) of Ru from (C5H5)Ru(CO)2(C2H5) and 18O2 were quantitatively analyzed using quadrupole mass spectrometry (QMS). The gas-phase reaction products during the Ru precursor pulse were CO2, CO, H2, and H2O, while during the O2 pulse primarily CO2 and CO were produced. Approximately 70% of the C atoms and ∼100% of the H atoms contained in the Ru precursor were released during the Ru pulse of the ALD process. From these observations, and on the basis of the surface science and catalysis literature, we conclude that the complex surface chemistry during Ru ALD can be described by catalytic combustion reactions. These reactions consist of the dissociative chemisorption of the Ru precursor’s ligands on the Ru surface during the metal pulse. These hydrocarbon ligands undergo dehydrogenation and combustion reactions on the catalytic metal surface in the presence of surface O formed due to the dissociation of O2 molecules in the previous O2 ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call