Abstract

Performance data are presented for methane oxidation on alumina-supported Pd, Pt, and Rh catalysts under both fuel-rich and fuel-lean conditions. Catalyst activity was measured in a micro-scale isothermal reactor at temperatures between 300 and 800 °C. Non-isothermal (near adiabatic) temperature and reaction data were obtained in a full-length (non-differential) sub-scale reactor operating at high pressure (0.9 MPa) and constant inlet temperature, simulating actual reactor operation in catalytic combustion applications. Under fuel-lean conditions, Pd catalyst was the most active, although deactivation occurred above 650 °C, with reactivation upon cooling. Rh catalyst also deactivated above 750 °C, but did not reactivate. Pt catalyst was active above 600 °C. Fuel-lean reaction products were CO 2 and H 2O for all three catalysts. The same catalysts tested under fuel-rich conditions demonstrated much higher activity. In addition, a ‘lightoff’ temperature was found (between 450 and 600 °C), where a stepwise increase in reaction rate was observed. Following ‘lightoff’ partial oxidation products (CO, H 2) appeared in the mixture, and their concentration increased with increasing temperature. All three catalysts exhibited this behavior. High-pressure (0.9 MPa) sub-scale reactor and combustor data are shown, demonstrating the benefits of fuel-rich operation over the catalyst for ultra-low emissions combustion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call