Abstract

Abstract A propane combustion catalyst was prepared by supporting of Pd on optimized multiphase composition, containing Al2O3, La2O3 and CeO2 aiming for possible application in catalytic converters for abatement of propane in waste gases. The catalyst characterization has been made by N2- physisorption, XRD, SEM/EDX, TEM and XPS. The obtained values for reaction order towards propane and oxygen are 0.57 and 0.14, respectively. The negative reaction order towards the water vapour (−0.26) shows an inhibition effect of the water molecules. According to the kinetics model calculations, the reaction pathway over Pd-modified La–Ce catalyst proceeds most probably through Langmuir–Hinshelwood mechanism with adsorption of propane and oxygen on different types of sites, dissociative adsorption of oxygen, whereupon water molecules compete with propane molecules for one and the same type of adsorption sites. For practical evaluation of the synthesized material, a sample of Pd/Al2O3–La2O3–CeO2, supported on rolled Al-containing stainless steel (Aluchrom VDM®) to form a single monolithic channel was prepared and tested. Two-dimensional heterogeneous models were used to simulate the propane combustion from laboratory reactor to full-scale adiabatic monolithic converter for ensuring an effective abatement of propane emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.