Abstract
Hazardous oil sludge (OS) poses a great challenge to the environment, whereas conventional treatment methods (i.e., incineration or pyrolysis-incineration) are relatively less value-added and will bring about air pollution problems. To realize the high-value utilization of OS, catalytic co-pyrolysis with waste biomass to produce platform chemicals was studied using TG-FTIR and Py (pyrolyzer)-GC/MS methods. Results showed that for the non-catalytic co-pyrolysis of RH (rice husk) and OS, the main synergy on weight loss was the greatly lowered initial pyrolysis temperature of RH (for ∼55 °C) at the lower temperatures and the reduced weight loss ratio of OS (∼10–18 wt%) within the higher temperature range. ZSM-5 catalyst promoted the degradation of OS and RH mixtures at < 150 °C, yet showed minor effects on their weight loss at higher temperatures. The oxygenated and aliphatic compounds from non-catalytic co-pyrolysis were efficiently converted, resulting in an increased relative yield of aromatics to the highest of 46% and an elevated selectivity to BTX (as high as 60%). Despite the relatively short carbon chain length of OS components, ZSM-5 was proved effective to activate the OS pyrolysis products, thus enhancing the further aromatization reactions with biomass pyrolysis intermediates. This study provides a novel method for value-added co-utilization of hazardous OS waste and abundant biomass waste, and thus is beneficial to producing renewable chemicals while reducing the environment pollutant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.