Abstract

Manganese oxides are promising catalysts for the oxidation of CO as well as the removal of volatile organic compounds from exhaust gases because of their structural versatility and their ability to reversibly change between various oxidation states. MnO2 nanoparticles doped with Na+ or K+ were synthesized by a semi-continuous precipitation method based on spray drying. Specific surface area, crystallite size, and morphology of these particles were predominantly determined by the spray-drying parameters controlling the quenching of the crystallite growth, whereas thermal stability, reducibility, and phase composition were strongly influenced by the alkali ion doping. Pure α-MnO2 was obtained by K+ doping under alkaline reaction conditions followed by calcination at 450 °C, which revealed a superior catalytic activity in comparison to X-ray amorphous or Mn2O3-containing samples. Thus, the phase composition is identified as a key factor for the catalytic activity of manganese oxides, and it was possible to achieve a similar activation of a K+-doped X-ray amorphous catalyst under reaction conditions resulting in the formation of crystalline α-MnO2. The beneficial effect of K+ doping on the catalytic activity of MnO2 is mainly associated with the stabilizing effect of K+ on the α-MnO2 tunnel structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.