Abstract

Reduction of (ArL)CoIIBr (ArL = 5-mesityl-1,9-(2,4,6-Ph3C6H2)dipyrrin) with potassium graphite afforded the novel CoI synthon (ArL)CoI. Treatment of (ArL)CoI with a stoichiometric amount of various alkyl azides (N3R) furnished three-coordinate CoIII alkyl imidos (ArL)Co(NR), as confirmed by single-crystal X-ray diffraction (R: CMe2Bu, CMe2(CH2)2CHMe2). The exclusive formation of four-coordinate cobalt tetrazido complexes (ArL)Co(κ2-N4R2) was observed upon addition of excess azide, inhibiting any subsequent C-H amination. However, when a weak C-H bond is appended to the imido moiety, as in the case of (4-azido-4-methylpentyl)benzene, intramolecular C-H amination kinetically outcompetes formation of the corresponding tetrazene species to generate 2,2-dimethyl-5-phenylpyrrolidine in a catalytic fashion without requiring product sequestration. The imido (ArL)Co(NAd) exists in equilibrium in the presence of pyridine with a four-coordinate cobalt imido (ArL)Co(NAd)(py) ( Ka = 8.04 M-1), as determined by 1H NMR titration experiments. Kinetic studies revealed that pyridine binding slows down the formation of the tetrazido complex by blocking azide coordination to the CoIII imido. Further, (ArL)Co(NR)(py) displays enhanced C-H amination reactivity compared to that of the pyridine-free complex, enabling higher catalytic turnover numbers under milder conditions. The mechanism of C-H amination was probed via kinetic isotope effect experiments [ kH/ kD = 10.2(9)] and initial rate analysis with para-substituted azides, suggesting a two-step radical pathway. Lastly, the enhanced reactivity of (ArL)Co(NR)(py) can be correlated to a higher spin-state population, resulting in a decreased crystal field due to a geometry change upon pyridine coordination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.