Abstract

ABSTRACT In a catalytic branching random walk on a multidimensional lattice, with arbitrary finite total number of catalysts, in supercritical regime, when the vector coordinates of the random walk jump are assumed independent (or close to independent) to one another and have semi-exponential distributions, a limit theorem provides the almost sure normalized locations of the particles at the boundary between populated and empty areas. Contrary to the case of random walk increments with light distribution tails, the normalizing factor grows faster than linearly over time. The limit shape of the front in the case of semi-exponential tails is no longer convex, as it is in the case of light tails.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call