Abstract

The catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial drug chlorophene has been studied considering four undivided electrolytic cells, where a Pt or boron-doped diamond (BDD) anode and a carbon felt or O2-diffusion cathode have been used. Chlorophene electrolyses have been carried out at pH 3.0 under current control, with 0.05M Na2SO4 as supporting electrolyte and Fe3+ as catalyst. In these processes the drug is oxidized with hydroxyl radical (OH) formed both at the anode from water oxidation and in the medium from electrochemically generated Fenton's reagent (Fe2++H2O2, both of them generated at the cathode). The catalytic behavior of the Fe3+/Fe2+ system mainly depends on the cathode tested. In the cells with an O2-diffusion cathode, H2O2 is largely accumulated and the Fe3+ content remains practically unchanged. Under these conditions, the chlorophene decay is enhanced by increasing the initial Fe3+ concentration, because this leads to a higher quantity of Fe2+ regenerated at the cathode and, subsequently, to a greater OH production from Fenton's reaction. In contrast, when the carbon felt cathode is used, H2O2 is electrogenerated in small extent, whereas Fe2+ is largely accumulated because the regeneration of this ion from Fe3+ reduction at the cathode is much faster than its oxidation to Fe3+ at the anode. In this case, an Fe3+ concentration as low as 0.2mM is required to obtain the maximum OH generation rate, yielding the quickest chlorophene removal. Chlorophene is poorly mineralized in the Pt/O2 diffusion cell because the final Fe3+–oxalate complexes are difficult to oxidize with OH. These complexes are completely destroyed using a BDD anode at high current thanks to the great amount of OH generated on its surface. Total mineralization is also achieved in the Pt/carbon felt and BDD/carbon felt cells with 0.2mM Fe3+, because oxalic acid and its Fe2+ complexes are directly oxidized with OH in the medium. Comparing the four cells, the highest oxidizing power regarding total mineralization is attained for the BDD/carbon felt cell at high current due to the simultaneous destruction of oxalic acid at the BDD surface and in the bulk solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call