Abstract

Despite the persistent presence of medium-sized (seven- to nine-membered) scaffolds in natural products and biologically active molecules, their asymmetric syntheses have always been considered a formidable task; therefore, they have remained underdeveloped when compared to the enantioselective synthesis of five- and six-membered ring scaffolds. One important class of such medium-sized ring frameworks includes seven- to nine-membered biaryl bridged carbo- and heterocycles. These medium-ring-sized biaryl frameworks possess more configurational stability than the related smaller ring structures and are common features of valuable natural products, bioactive compounds, chiral catalysts, and molecular motors. Due to these exciting properties and broad applications, over the last few years, the catalytic enantioselective synthesis of medium-sized bridged biaryls has seen an upsurge. This highlight article describes the development of organocatalysed and transition-metal catalysed transformations for procuring seven-, eight-, and nine-membered bridged biaryls bearing a chiral axis/one or more asymmetric carbon centres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.