Abstract

The lithium amide derived from the chiral diamine (1 R,3 S,4 S)-3-(1-pyrrolidinyl)methyl-2-azabicyclo[2.2.1]heptane, has been reported to catalytically deprotonate cyclohexene oxide and other epoxides, yielding chiral allylic alcohols in excellent enantiomeric excess. In this work, 6Li, 1H and 13C NMR spectroscopy have been used to study the aggregation of the chiral lithium amide in THF and the influence on the aggregation by the addition of additives, such as 1,8-diazabicyclo-[5.4.0]undec-7-ene (DBU). The activated complex under catalytic deprotonation of cyclohexene oxide, that is, with excess Li-DBU and free DBU, is built from one monomer of the chiral lithium amide, one molecule of epoxide and one additional molecule of DBU. The reaction order (−0.97) obtained for the bulk base Li-DBU shows an inverse dependence on the concentration, suggesting a deaggregation of the initial mixed dimer to a monomer-based transition state containing a monomer of the lithium amide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.