Abstract

In this study, Cu2ZnSnSe4 (CZTSe) films are deposited onto the fluorine-doped-tin-oxide-coated glass substrate via the selenization of electrodeposited Cu–Zn–Sn metal precursors in an acidic solution with the applied potential of −0.9 V vs. an Ag/AgCl electrode. X-ray diffraction patterns reveal that the samples are the quaternary tetragonal CZTSe phase. The thicknesses and direct band gaps of the samples are in the ranges of 2.3 to 2.7 μm and 0.95 to 1.02 eV, respectively. All samples are p-type semiconductors with carrier density, mobility and flat-band potential in the ranges of 3.88 × 1017 to 1.37 × 1018 cm−3, 10.31 to 12.6 cm2 V−1 s−1 and −0.01 V to −0.08 V vs. Ag/AgCl reference electrode, respectively. The sample with [Cu]/[Zn + Sn] and [Zn]/[Sn] molar ratios of 0.87 and 0.66, respectively, has a maximum photo-enhanced current density of 0.41 mA cm−2 at an applied bias of −0.5 V vs. an Ag/AgCl electrode in 0.5 M H2SO4 solution under illumination. The best photo-conversion efficiency of dye-sensitized solar cells using CZTSe with [Cu]/[Zn + Sn] and [Zn]/[Sn] molar ratios of 0.87 and 0.66, respectively, as the counter electrode was 7.98%. The results show the high quality CZTSe films have potentials in applications of photoelectrochemical water splitting and dye-sensitized solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.