Abstract

In comparison to the traditional petroleum-based plastics, polylactic acid, the most popular biodegradable plastic, can be decomposed into carbon dioxide and water in the environment. However, the natural degradation of polylactic acid requires a substantial period of time and, more importantly, it is a carbon-emitting process. Therefore, it is highly desirable to develop a novel transformation process that can upcycle the plastic trash into value-added products, especially with high chemical selectivity. Here we demonstrate a one-pot catalytic method to convert polylactic acid into alanine by a simple ammonia solution treatment using a Ru/TiO2 catalyst. The process has a 77% yield of alanine at 140 °C, and an overall selectivity of 94% can be reached by recycling experiments. Importantly, no added hydrogen is used in this process. It has been verified that lactamide and ammonium lactate are the initial intermediates and that the dehydrogenation of ammonium lactate initiates the amination, while Ru nanoparticles are essential for the dehydrogenation/rehydrogenation and amination steps. The process demonstrated here could expand the application of polylactic acid waste and inspire new upcycling strategies for different plastic wastes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.