Abstract

A series of new (tBu2PSCOPR2)IrHCl iridium complexes with ‘hybrid’ phosphinothious-phosphinite PSCOP ligands ([tBu2PSCOPR2=1-(SPtBu2)-3-(OPR2)-C6H4], R=tBu, 4a, R=Cy, 4b, R=iPr, 4c, and R=Et, 4d) have been synthesized and characterized. Treatment of complexes 4a–d with sodium tert-butoxide generates the active species for catalytic transfer-dehydrogenation of cyclooctane (COA) or n-octane using tert-butylethylene (TBE) as hydrogen acceptor to form cyclooctene (COE) or octenes, respectively. The catalytic activity of these complexes and the product selectivity in alkane dehydrogenation is greatly influenced by the steric properties of the pincer ligand. In general, the less sterically bulky complex exhibits higher catalytic activity than the more hindered complex. Among the new (PSCOP)Ir-type complexes, the least crowded complex (tBu2PSCOPEt2)IrHCl 4d is most active for n-octane/TBE transfer-dehydrogenation. The relatively crowded, less active, complexes (tBu2PSCOPtBu2)IrHCl (4a) and (tBu2PSCOPCy2)IrHCl (4b) exhibit high regioselectivity for α-olefin formation at the early stages of the reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.