Abstract

We demonstrate how to incorporate a catalyst to enhance the performance of a heat engine. Specifically, we analyze efficiency in one of the simplest engine models, which operates in only two strokes and comprises of a pair of two-level systems, potentially assisted by a d-dimensional catalyst. When no catalysis is present, the efficiency of the machine is given by the Otto efficiency. Introducing the catalyst allows for constructing a protocol which overcomes this bound, while new efficiency can be expressed in a simple form as a generalization of Otto's formula: 1-(1/d)(ω_{c}/ω_{h}). The catalyst also provides a bigger operational range of parameters in which the machine works as an engine. Although an increase in engine efficiency is mostly accompanied by a decrease in work production (approaching zero as the system approaches Carnot efficiency), it can lead to a more favorable trade-off between work and efficiency. The provided example introduces new possibilities for enhancing performance of thermal machines through finite-dimensional ancillary systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call