Abstract

A facile synthesis of nanostructured vanadium oxide catalysts grown inside a honeycomb ceramic filter by electrodeposition without heat treatment is reported. The prepared catalysts are investigated for a selective catalytic reduction (SCR) of nitrogen oxide (NOx) with ammonia (NH3) in the temperature ranges from 250 to 450 °C. The SCR test results indicate that the NOx removal efficiency of the as-deposited sample is comparable to that of the sample heat treated at 600 °C as well as that of the sample prepared by conventional wash coating method. The nanostructured catalysts show similar NOx removal efficiencies after several recycles. Both polycrystalline and amorphous phases co-exist in the electrodeposited V-oxide catalysts confirmed by X-ray diffraction and selective area electron diffraction. The V-oxide catalysts show stronger V=O bond peaks and higher ratio of V4+/V5+ and Oα/Oβ on their surfaces as characterized by Raman spectroscopy and X-ray photoelectron spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.