Abstract

Addressing the challenge of increasing the rate of CO2 capture by accelerating the hydration process, we proposed the use of a new class of heterogeneous inorganic catalysts for this purpose. The presented research focused on Co3O4-based nanocatalysts produced by low-pressure plasma deposition (PECVD) in the form of thin films that can be deposited on any structured packing. The kinetic studies of this process were performed by bubbling CO2 through pure water with catalytic or inert packing, measuring changes in pH value over time. The developed kinetic model described the experimental data very well and showed that the reaction at the interface between the CO2 bubble and the catalyst surface is responsible for the catalytic effect. Studies of the molecular structure of the catalyst surface, carried out by the XPS technique, showed that the chemisorbed H2O clusters on this surface are the active centers for the interaction with gaseous CO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call