Abstract
In this paper synthesis and catalytic properties of new catalysts based on double lithium-zirconium phosphate (LiZr2(PO4)3) with monoclinic NASICON-type structure, doped by indium, niobium and molybdenum are discussed. The obtained samples with particle size of 50–300nm were characterized by X-ray diffraction, scanning electron microscopy and X-ray microanalysis. The synthesized samples exhibit catalytic activity in the dehydration and dehydrogenation reactions of ethanol conversion. The main products were acetaldehyde, diethyl ether, hydrogen, C2- and C4-hydrocarbons. Indium- and molibdenum-doped samples were characterized by high activity in dehydrogenation processes, while niobium-doped was more active in dehydration processes. The highest selectivity in diethyl ether formation was achieved for LiZr2(PO4)3 and Nb-doped samples (90 and 60% at 300°C). The highest hydrogen yield (up to 60%) was obtained with the use of In-doped catalyst. LiZr2(PO4)3 and Mo-doped samples are also noticeable for high C4-hydrocarbons formation, selectivity to which reaches 60% at 390°C. Use of a 100% hydrogen selective palladium-ruthenium alloy membrane increases hydrogen yield by 20%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.