Abstract

ABSTRACTWe studied the oxidation reactions of thiocyanate and L-cysteine on iron phthalocyanine (FePc) coupled via a bridging ligand of the 4-mercatopyridine (4MP) type to a gold cluster (Au26), aiming to simulate a modified gold electrode. Theoretical models have been used based on the framework of density functional theory. Several mechanistic pathways are explored for the study of these reactions, finding that the most favorable mechanism involves an electron transfer process as the rate-determining step. Along the process, the ability of the gold cluster to act as an electron acceptor facilitating the reactions was detected. In addition, the proposed models presented a correlation between the energy obtained for the rate-determining step of the reaction and the experimental oxidation potentials of the thiocyanate and L-cysteine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call