Abstract

We present the analysis of the catalytic activity of gold nanoparticles in aqueous solution as a function of temperature. As a model reaction, the reduction of p-nitrophenol (Nip) by sodium borohydride (BH4–) is used. The gold nanoparticles are immobilized on cationic spherical polyelectrolyte brushes that ensure their stability against aggregation. High-resolution transmission electron microscopy shows that the Au nanoparticles are faceted nanocrystals. The average size of the nanoparticles is 2.2 nm, and the total surface area of all nanoparticles could be determined precisely and was used in the subsequent kinetic analysis. Kinetic data have been obtained between 10 and 30 °C by monitoring the concentrations of Nip and BH4– by UV–vis spectroscopy. The reaction starts after an induction time t0, and the subsequent stationary phase yields the apparent reaction rate, kapp. All kinetic data could be modeled in terms of the Langmuir–Hinshelwood model; that is, both reactants must be adsorbed onto the surfac...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call