Abstract

Investigation of the catalytic activity and stability of enzymes in confined nano/microspace provides valuable contributions to the fundamental understanding of biological reactions taking place on a mesoscopic scale within confined spaces. In this paper, macroporous silica foam (MSF) is used as a nanoreactor to co-confine glucose oxidase (GOD) and horseradish peroxidase (HRP). Then, the enzymatic cascade reactions, which act in tandem inside nanoreactors, for oxidation of glucose and 3,3',5,5'-tetramethylbenzidine (TMB) were studied. The catalytic kinetic parameters of apparent Michaelis constant (K(m)(app)) and maximum rate (V(max)) were obtained from Lineweaver-Burk plot by UV-vis spectrometry. Results showed that the catalytic activity of the co-confined enzymes is reduced compared to that of free enzymes in solution at room temperature. The stabilities of co-confined enzymes in denaturing agents, such as guanidinium chloride (GdmCl) and urea, were higher than those of free enzymes in solution. When employing a co-confined bienzyme system as a biosensor for the detection of glucose, a wider linear range of glucose was obtained for the co-confined bienzyme system than for free enzymes in solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call