Abstract
Barium hexaferrite (BaFe 12O 19) has traditionally been used in permanent magnets and more recently used for high density magnetic recording. The classical ceramic method for the preparation of barium hexaferrite consists of firing mixture of chemical grade iron oxide and barium carbonate at high temperature. In this paper a mixture of chemical grade hematite, barium oxide and predetermined mixtures of iron oxide ore and barite ore containing variable amounts of coke were used to prepare barium hexaferrite (BaFe 12O 19) as a permanent magnetic material. The mixtures were mixed in a ball mill and fired for 20 h in a tube furnace at different temperatures (1100, 1150, 1200 and 1250 °C). XRD, magnetic properties, porosity measurements and catalytic activity were used for characterization of the produced ferrite. The results of experiments showed that the optimum conditions for the preparation of barium hexaferrite are found at 1200 °C for the mixture of chemical grade hematite and barium oxide. It was also found that the barium hexaferrite can be prepared from the iron and barite ores at 1200 °C. The addition of coke enhanced the yield of barium hexaferrite and improved its physicochemical properties. Samples prepared from ores with coke% = 0 show the most acidic active sites, they show a higher catalytic activity towards H 2O 2 decomposition. With addition of coke the catalytic activity decreases due to the poisoning effect of carbon on the available active site.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.