Abstract

In this study, a novel microalgae based support material was developed and applied. The Chlorella Vulgaris microalgal strain was modified by treating the algal biomass with phosphoric acid for proton binding process (CVMS-H3PO4). Ultimately, the CVMS-H3PO4-metal (CuB, NiB, or FeB) catalysts were used as highly efficient solid catalysts to produce hydrogen from the methanolysis of NaBH4. Once the superior metal was identified, the NaBH4 concentration, metal percentage in the supported-catalyst, catalyst amount, and temperature effect on the methanolysis reaction was thoroughly investigated. The maximum hydrogen production rate for the CVMS-H3PO4 supported-catalyst was obtained with the use of 20% Cu metal at 30 °C and it was found to be 6500 mL/min/gcat. In addition, the maximum hydrogen production rate for the CVMS-H3PO4 supported-catalyst was attained with the use of 20% Cu metal at 60 °C and it was found to be 21176 mL/min/gcat. Also, the activation energy was determined as 23.79 kJ/mol. The re-usability studies of the microalgal strain supported-CuB catalyst were performed and it was found that there was no decrease in % conversion for this catalyst. XRD, FTIR, SEM, and ICP-MS analysis were carried out to characterize CVMS-H3PO4CuB catalyst thoroughly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.