Abstract
Alternansucrase, a glucosyltransferase, is currently used to produce slowly digestible alternan oligosaccharides or maltooligosaccharides from sucrose. These oligosaccharides are popular for food fortification to lower postprandial glucose levels. This study aimed to explore the enzymatic reaction of alternansucrase in simulated in vitro gastric reaction conditions. Under the studied conditions, SucroSEB (a model enzyme for alternansucrase) hydrolyzed the sucrose and transglycosylated the glucose to produce glucans, both in the absence and presence of acceptors. The preference of the acceptor was maltose˃ raffinose˃ lactose. The rate of sucrose hydrolysis was significantly higher in the presence of maltose (p = 0.024). The glucans formed during the reaction included oligomers (DP 3–10) and polymers (DP ≥ 11), both of which increased over time. These glucans contained α-1,3 and α-1,6 glycosidic linkages, confirmed by 1H and 13C NMR. They were slowly and partially digestible in the presence of rat intestinal extract in contrast to the complete and rapid digestion of starch. The glucans formed after a longer gastric reaction time exhibited higher dietary fiber potential (19.145 ± 4.77 %; 60 min) compared to those formed during the initial phase (2.765 ± 0.19 %; 15 min). Overall, this study demonstrated the efficacy of SucroSEB in converting sucrose to slowly and partially digestible glucans under simulated in vitro gastric conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.