Abstract

Structure and stability of an iron-based catalyst for the oxygen reduction reaction, prepared by heat treatment of carbon-supported iron(III) tetramethoxyphenylporphyrin chloride (FeTMPP−Cl), were investigated. The oxygen reduction in acid electrolyte was examined with the rotating (ring) disk electrode. The measurements confirmed that H2O2 is generated as a byproduct of the oxygen reduction. The structural elucidation of the catalyst showed that the porphyrin decomposes during heat treatment. Nitrogen atoms of the heat-treated porphyrin become bonded at the edge of graphene layers as pyridine- and pyrrole-type nitrogen. Two Fe3+ components as well as metallic, carbidic and oxidic iron were detected by Mössbauer spectroscopy. An electrochemical longevity test and two degradation experiments with sulfuric acid and H2O2 showed that H2O2 causes the degradation of active sites. A 6-fold coordinated Fe3+ compound seems to be responsible for the catalytic activity. Only 8% of the primary iron content is present in the active iron component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.