Abstract
Acrylic acid is a refractory compound for the non-catalytic wet oxidation (WO) process and can seriously damage the environment when released in industrial effluents. Oxidation of acrylic acid by catalytic wet oxidation (CWO) was studied in slurry conditions in a high-pressure batch reactor at 200°C and 15bar of oxygen partial pressure. Several solid cerium-based catalysts prepared in our laboratory were used (Ag/Ce, Co/Ce, Mn/Ce, CeO, MnO) and evaluated in terms of activity, selectivity and stability. Mn/Ce shows the higher activity in 2h with 97.7% reduction of total organic carbon (TOC) followed by: MnO(95.5%)>Ag/Ce(85.0%)>Co/Ce(65.1%)>CeO(61.2%). Attempts were also carried out to analyze the influence of different Mn/Ce molar ratios. High percentages of Mn lead to practically total organic carbon concentration (TOC) abatements while low ratios lead to the formation of non-oxidizable compounds. Acrylic acid was readily degraded by all the catalysts pointing out the high importance of using a catalytic process. pH was an indicator of the reaction pathway and acetic acid was found as the major reaction intermediate compound; however it is completely oxidized after 2h with exception for Co/Ce, CeO and MnO. Carbon adsorption and leaching of metals were poorly found for Mn/Ce indicating high stability. The catalyst microstructure after the reaction was analyzed and formation of whiskers of β-MnO2 (or less probably MnOOH) were observed at the catalyst surface. Therefore, Mn/Ce revealed to be a promising catalyst for the treatment of effluents containing acrylic acid; nevertheless, its commercialization depends on further research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.