Abstract
With ever-increasing plastic waste, a robust and sustainable methodology to valorize the waste and tweak, the composition of the value added product is the need of the hour. The present study describes the effect of different heterogeneous catalyst systems on the yield, composition and nature of the pyrolysis oil produced from various waste polyolefins like high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE), and polypropylene (PP). The waste polyolefins were subjected to thermal as well as catalytic pyrolysis. Liquid, gas, and solid products were obtained during the pyrolysis. Various catalysts such as activated alumina (AAL), ZSM-5, FCC catalyst, and halloysite clay (HNT) were used. Usage of catalysts has reduced the temperature of the pyrolysis reaction from 470 to 450°C with better liquid product yield. PP waste generated higher liquid yield compared to LLDPE and HDPE waste. The highest liquid yield of 70.0% was achieved with PP waste using AAL catalyst at 450°C. The sulfur and chloride content was found to be < 10 and < 20ppm respectively in all the pyrolysis liquid. Pyrolysis liquid products were analyzed using gas chromatography (GC), nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, X-ray fluorescence (XRF) spectroscopy, and gas chromatography coupled with mass spectrophotometry (GC-MS). The obtained liquid products consist of paraffin, naphthene, olefin and aromatic components. Catalyst regeneration experiments with AAL showed that the product distribution profile remains the same up to three cycles of regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.