Abstract
Sulfur-containing polymers have been widely studied because of their high refractivity and low dispersion, but the efficient synthetic approach of them is quite limited. In this work, we use the abundantly existed elemental sulfur as monomer to prepare polythioamide directly and efficiently through a facile multicomponent polymerization (MCP) of aromatic diynes, sulfur, and aliphatic diamines. This MCP can proceed smoothly in a catalyst-free manner with high atom utilization to afford polythioamide with well-defined structure, high molecular weight, and high yield. It demonstrates a convenient approach to convert elemental sulfur into functional polythioamide. Fluorescence is observed from the polythioamide, despite the absence of typical fluorophores, owing to the “heterodox clusters” composed of a large number of lone-pair-containing electron-rich heteroatoms. The emission maxima and efficiencies of the polymers depend on the formation of molecular aggregates through intrachain and intermolecular intera...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.