Abstract
Quantum chemical calculations are emerging as an effective way to screen catalysts for particular applications. In this contribution, we demonstrate the power of density functional theory to study CO2 hydrolysisby six carbonic anhydrase mimics, evaluating thermodynamic and kinetic parameters at the mechanistic level. A microkinetic model was then built based on the kinetics and thermodynamics calculated from first principles. The intrinsic reaction rate constant was calculated from the results of the microkinetic model and compared with experimental data. Overall, the rate constants were in good agreement with experimental values, except for zinc-tri and complex b, which were overestimated. This was ascribed to their ineffective complexation with Zn2+. How the reaction rate constants vary with time was also investigated. From 0 to 12 ms, the rate constants of complexes a and d decreased to 50 and 67% of their initial values, respectively; the rate constants of complexes b and f2 were almost invariant with time; the rate constant of complex f1 showed an unusual double sigmoidal shape. The pKa values of these six carbonic anhydrase mimics as well as three additional mimics were calculated. A correlation between pKa values and the binding free energy of OH-was obtained by fitting data from five zinc(II) aza-macrocyclic complexes. The reaction rate constants were found to increase linearly with the pKa value, indicating CO2 adsorption is the rate-limiting step.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.