Abstract

Polymer Electrolyte Fuel Cells (PEFCs) are promising electrochemical devices for the direct conversion of chemical energy of a fuel into electrical work [1–5]. Enormous research programs worldwide explore PEFCs as power sources that could replace internal combustion engines in vehicles and provide power to portable and stationary applications. Typically PEFCs operate below ~80 °C. Anodic oxidation of H2 produces protons that migrate through the polymer electrolyte membrane (PEM) to the cathode, where reduction of O2 produces water. Meanwhile, electrons, produced at the anode, perform work in external electrical appliances or engines. Unrivalled thermodynamic efficiencies, high energy densities, and ideal compatibility with hydrogen distinguish PEFCs as a primary solution to the global energy challenge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.