Abstract
Si-SiOx core-shell nanowires (NWs) ranging from 10 to 30 nm in diameter are prepared by a simple evaporation of silicon monoxide and control of substrate temperatures without any catalyst. The Si-SiOx NWs grown at 735 and 955 °C are strongly anchored to the Cu current collector by forming copper silicide at the interface between Si and Cu, and subsequently used as anodes in lithium-ion batteries, in which no binder or conducting materials are used. The Si-SiOx NWs anodes show excellent electrochemical performances in terms of capacity retention and rate capability. In particular, the Si-SiOx NW anode grown at 955 °C shows a reversible capacity of ∼1000 mAh g(-1) even at a high-rate of 50 C. This catalyst-free synthetic route of Si-SiOx NWs that are strongly anchored to the Cu current collector opens up an effective process for fabricating other high-capacity anodes in lithium-ion batteries (LIBs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.