Abstract

High-density GaN nanorods with outstanding crystal quality were grown on c-sapphire substrates by radio-frequency plasma-assisted metalorganic molecular beam epitaxy under catalyst- and template-free growth condition. Morphological and structural characterization of the GaN nanorods was employed by X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy (HRTEM). These results indicate that the rod number density can reach 1/spl times/10/sup 10/ cm/sup -2/ and the nanorods are well-aligned with preferentially oriented in the c-axis direction. Meanwhile, no metallic (Ga) droplet was observed at the end of the rods, which is the intrinsic feature of vapor-liquid-solid method. Nanorods with no traces of any extended defects, as confirmed by TEM, were obtained as well. In addition, optical investigation was carried out by temperature- and power-dependent micro-photoluminescence (/spl mu/-PL). The PL peak energies are red-shifted with increasing excitation power, which is attributed to many-body effects of free carriers under high excitation intensity. The growth mechanism is discussed on the basis of the experimental results. Catalyst-free GaN nanorods presented here might have a high potential for applications in nanoscale photonic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call