Abstract

A new method for catalyst design was discussed based on artificial neural network, which was developed to simulate the relations between catalyst components and catalytic performance in the previous research. For enhancing efficiency of catalyst design, a new hybrid GA tested by TSP was generated for global optimization to design the ‘optimal’ catalyst. A multi-turn design strategy was described. Based on the previous research, the design method was applied for designing multi-component catalyst for methane oxidative coupling, some better catalysts, in which C 2 hydrocarbon yields were greater than 25% were designed. When reacting on the best catalyst, GHSV was 33313 cm 3 g −1 h −1 , CH 4:O 2 was 3, reaction temperature was 1069 K , methane conversion and C 2 hydrocarbon selectivity were 37.79% and 73.50%, respectively (C 2 hydrocarbon yield was 27.78%), which was higher than that of previous reported catalysts on no diluted gas condition, and showed a better prospect for industrialization of methane oxidative coupling. The research also showed that the new catalyst design method is highly efficient and universal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.