Abstract
Overcrowded alkenes are expeditiously prepared by the versatile Barton–Kellogg olefination and have remarkable applications as functional molecules owing to their unique stereochemical features. The induced stereodynamics thereby enable the controlled motion of molecular switches and motors, while the high configurational stability prevents undesired isomeric scrambling. Bistricyclic aromatic enes are prototypical overcrowded alkenes with outstanding stereochemical properties, but their stereocontrolled preparation was thus far only feasible in stereospecific reactions and with chiral auxiliaries. Herein we report that direct catalyst control is achieved by a stereoselective Barton–Kellogg olefination with enantio‐ and diastereocontrol for various bistricyclic aromatic enes. Using Rh2(S‐PTAD)4 as catalyst, several diazo compounds were selectively coupled with a thioketone to give one of the four anti‐folded overcrowded alkene stereoisomers upon reduction. Complete stereodivergence was reached by catalyst control in combination with distinct thiirane reductions to provide all four stereoisomers with e.r. values of up to 99:1. We envision that this strategy will enable the synthesis of topologically unique overcrowded alkenes for functional materials, catalysis, energy‐ and electron transfer, and bioactive compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.