Abstract

Single‐crystalline hafnium carbide (HfC) nanotubes were synthesized by a one‐step catalyst‐assisted chemical vapor deposition (CVD) method. The typical nanotubes had uniform diameters of ~60 nm and wall thicknesses of ~15 nm and preferentially grew along [201]. From HRTEM/EELS analysis, the growth mechanism based on carbon nanotubes (CNT) tip growth and CNT‐templated reaction was proposed for explaining the formation of HfC nanotubes. According to the mechanism, CNTs were first formed by diffusion of C atoms on the surface of solid Ni catalyst particles. Then, gaseous Hf species reacted with C atoms from CNTs to form HfC nanotubes. During the entire growth process, Hf atoms did not participate in the catalytic reaction. Thus, this process was distinguished from the conventional vapor–liquid–solid process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.