Abstract
Halide perovskites (HPs), particularly at the nanoscale, attract attention due to their unique optical properties compared to other semiconductors. They exhibit bright emission, defect tolerance, and a broad tunable band gap. The ability to directly transport charge carriers along the HPs nanowires (NWs) has led to the development of methods for their synthesis. Most of these methods involve some version of an oriented attachment step with various modifications. In this study, we introduce CsPbBr3 nanowires produced via the solution-solid-solid (SSS) catalyst-assisted growth mechanism for the first time. We explored the kinetics of this process and examined the connection between the catalyst phase and its reactivity. We show how HP NWs grow with different SSS catalysts (i.e., Ag2S, Ag2Se, CuS) and discuss the required conditions for successful synthesis utilizing this mechanism. This method opens up a new avenue for producing HP NWs, which can be used to design and form new types of hybrid nanostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.