Abstract

Core–shell nanostructures consisting of active metal cores and protective shells often exhibit enhanced catalytic performance, in which reactants can access a small part of the core surfaces through the pores in the shells. In this study, we show that Pt nanoparticles (NPs) can be embedded into few-layer hexagonal boron nitride (h-BN) overlayers, forming Pt@h-BN core–shell nanocatalysts. The h-BN shells not only protect the Pt NPs under harsh conditions but also allow gaseous molecules such as CO and O2 to access a large part of the Pt surfaces through a facile intercalation process. As a result, the Pt@h-BN nanostructures act as nanoreactors, and CO oxidation reactions with improved activity, selectivity, and stability occur at the core–shell interfaces. The confinement effect exerted by the h-BN shells promotes the Pt-catalyzed reactions. Our work suggests that two-dimensional shells can function as robust but flexible covers on nanocatalyst surfaces and tune the surface reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.