Abstract

Volatile organic compounds (VOCs), common chemical contaminants found in office and home environments, are one of the main causes of sick building syndrome. To efficiently remove the VOCs in terms of energy efficiency, product selectivity, safety and durability is the main target for current indoor VOCs control study toward the aim for future commercial application. The main challenge to achieve this goal is represented by removal specific VOCs with low concentration under room temperature. In a chemical kinetics sense, this means overcoming the activation barriers to achieve considerable reaction rate for reactants with low concentration without the aid of increasing temperature. Assistance the VOCs catalysis degradation reaction with oxidizing species or pre-degradation the reactants to easier treated substances could also help to increase the reaction rate by providing an alternative route for the reaction with lower activation energy. This technique route thus holds great promise to achieve commercial application for indoor VOCs degradation study. Therefore, we provide here an overview of the efforts that have been developed already on combing traditional photocatalysis and catalysis technology with techniques capable of producing highly active species to remove indoor VOCs. The assistance techniques include, but not limited to technologies, such as vacuum ultraviolet, ozone, plasma. Special emphasis is placed on rational catalyst designing to meet the challenge of indoor VOCs removal in the kinetic sense. Last but not least, we also identified future opportunities for indoor air quality control including: (a) combining high-voltage electrostatics in the system using post catalyst bed configuration to solve the issues of VOCs abatement and particulate matter capture in one basket. (b) To obtain a more complete understanding of the mechanism underlying the combination effects, which is crucial to get a better catalyst designing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.