Abstract

The major oxidative folding pathways of bovine pancreatic ribonuclease A at pH 8.0 and 25 °C involve a pre-equilibrium steady state among ensembles of intermediates with zero, one, two, three and four disulfide bonds. The rate-determining steps are the reshuffling of the unstructured three-disulfide ensemble to two native-like three-disulfide species, des-[65-72] and des-[40-95], that convert to the native structure during oxidative formation of the fourth disulfide bond. Under the same regeneration conditions, with oxidized and reduced DTT, used previously for kinetic oxidative-folding studies of this protein, the addition of 4 μM protein disulfide isomerase (PDI) was found to lead to catalysis of each disulfide-formation step, including the rate-limiting rearrangement steps in which the native-like intermediates des-[65-72] and des-[40-95] are formed. The changes in the distribution of intermediates were also determined in the presence and absence of PDI at three different temperatures (with the DTT redox system) as well as at 25 °C (with the glutathione redox system). The results indicate that the acceleration of the formation of native protein by PDI, which we observed earlier, is due to PDI catalysis of each of the intermediate steps without changing the overall pathways or folding mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.