Abstract

This paper reports on a spectrophotometric kinetic study of the effects of the alkali metal ions Li+ and K+ on the ethanolysis of the aryl methyl phenyl phosphinate esters 3a-f in anhydrous ethanol at 25 degrees C. Rate data obtained in the absence and presence of complexing agents afford the second-order rate constants for the reaction of free ethoxide (k(EtO-)) and metal ion-ethoxide ion pairs (k(MOEt)). The sequence k(EtO-) < k(MOEt) is established for all the substrates, contrary to the generally observed reactivity order in nucleophilic substitution processes. The quantities deltaG(ip), deltaG(ts) and DeltaG(cat), which quantify the observed alkali metal ion effect in terms of transition state stabilization through chelation of the metal ion, give the order deltaG(ts) > deltaG(ip) for Li+ and K+. Hammett plots show significantly better correlation of rates with sigma and sigma(o) substituent constants than with sigma-, yielding moderately large rho(rho(o)) values that are consistent with a stepwise mechanism in which formation of a pentacoordinate (phosphorane) intermediate is the rate-limiting step. The range of the values of the selectivity parameter, rho(n) (= rho]/rho(eq)), 1.3-1.6, obtained for the uncatalyzed and alkali metal ion catalyzed reactions indicates that there is no significant perturbation of the transition state (TS) structure upon chelation of the metal ions. This finding is relevant to the mechanism of enzymatic phosphoryl transfer involving metal ion co-factors. The present results enable one to compare structural effects for nucleophilic reactions of several series of organophosphorus substrates. It is shown that the order of reactivity of the substrates: 4-nitrophenyl dimethyl phosphinate (2) > 3a > 4-nitrophenyl diphenyl phosphinate (1) is determined mainly by the steric effects of the alkyl/aryl substituents around the central P atom in the TS of the reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.