Abstract

Rates of protein folding reactions vary considerably. Some denatured proteins regain the native conformation within milliseconds or seconds, whereas others refold very slowly in the time range of minutes or hours. Varying folding rates are observed not only for different proteins, but can also be detected for single polypeptide species. This originates from the co-existence of fast- and slow-folding forms of the unfolded protein, which regain the native state with different rates. The proline hypothesis provides a plausible explanation for this heterogeneity. It assumes that the slow-folding molecules possess non-native isomers of peptide bonds between proline and another residue, and that crucial steps in the refolding of the slow-folding molecules are limited in rate by the slow reisomerization of such incorrect proline peptide bonds. Recently the enzyme peptidyl-prolyl cis-trans isomerase (PPIase) was discovered and purified from pig kidney. It catalyses efficiently the cis in equilibrium trans isomerization of proline imidic peptide bonds in oligopeptides. Here we show that it also catalyses slow steps in the refolding of a number of proteins of which fast- and slow-folding species have been observed and where it was suggested that proline isomerization was involved in slow refolding. The efficiency of catalysis depends on the accessibility for the isomerase of the particular proline peptide bonds in the refolding protein chain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.