Abstract

Hydrogen-deuterium exchange of 39 amide protons of Bacillus amyloliquefaciens ribonuclease (barnase) was analyzed by two-dimensional nuclear magnetic resonance in the presence of micromolar concentrations of the molecular chaperones GroEL and SecB. Both chaperones bound to native barnase under physiological conditions and catalyzed exchange of deeply buried amide protons with solvent. Such exchange required complete unfolding of barnase, which occurred in the complex with the chaperones. Subsequent collapse of unfolded barnase to the exchange-protected folding intermediate was markedly slowed in the presence of GroEL or SecB. Thus, both chaperones have the potential to correct misfolding in proteins by annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.