Abstract
Proton inventories (rate measurements in mixtures of H2O and D2O) were determined for the human leukocyte elastase catalyzed hydrolyses of thiobenzyl esters and p-nitroanilides of the peptides MeOSuc-Val, MeOSuc-Alan-Pro-Val (n = 0-2), and MeOSuc-Alan-Pro-Ala (n = 1 or 2). The dependencies of k2/Ks on mole fraction of solvent deuterium for the p-nitroanilides are "dome-shaped" and were fit to a model that incorporates the mechanistic features of generalized solvent reorganization when substrate binds to enzyme and partial rate limitation of k2/Ks by physical and chemical steps [Stein, R. L. (1985) J. Am. Chem. Soc. 107, 7768-7769]. The proton inventories for the deacylation of MeOSuc-Val-HLE and MeOSuc-Pro-Val-HLE are linear while those for the deacylation of MeOSuc-Ala-Pro-Val-HLE and MeOSuc-Ala-Ala-Pro-Val-HLE are "bowl-shaped" and could be fit to a quadratic dependence of rate on mole fraction of deuterium. These results are interpreted to suggest that the correct operation of the catalytic triad is dependent on substrate structure. Minimal substrates, which cannot interact with elastase at remote subsites, are hydrolyzed via a mechanism involving simple general-base catalysis by the active site histidine and transfer of a single proton in the rate-limiting transition state. In contrast, tri- and tetrapeptide substrates, which are able to interact at remote subsites, are hydrolyzed by a more complex mechanism of protolytic catalysis involving full functioning of the catalytic triad and transfer of two protons in the rate-limiting transition state. Finally, the proton inventories for the deacylation of MeOSuc-Ala-Pro-Ala-HLE and MeOSuc-Ala-Ala-Pro-Ala-HLE are dome-shaped and suggest that the chemical events of acyl-enzyme hydrolysis are only partially rate limiting for these reactions and that some other physical step is also partially rate limiting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.