Abstract

The marine natural product pateamine A (1) and its somewhat simplified designer analogue DMDA-Pat A (2) (DMDA = desmethyl-desamino) are potently cytotoxic compounds; most notably, 2 had previously been found to exhibit a promising differential in vivo activity in xenograft melanoma models, even though the ubiquitous eukaryotic initiation factor 4A (eIF4A) constitutes its primary biological target. In addition, 1 had also been identified as a possible lead in the quest for medication against cachexia, an often lethal muscle wasting syndrome affecting many immunocompromised or cancer patients. The short supply of these macrodiolides, however, rendered a more detailed biological assessment difficult. Therefore, a new synthetic approach to 1 and 2 has been devised, which centers on an unorthodox strategy for the formation of the highly isomerization-prone but essential Z, E-configured dienoate substructure embedded into the macrocyclic core. This motif was encoded in the form of a 2-pyrone ring and unveiled only immediately before macrocyclization by an unconventional iron-catalyzed ring opening/cross-coupling reaction, in which the enol ester entity of the pyrone gains the role of a leaving group. Since the required precursor was readily available by gold catalysis, this strategy rendered the overall sequence short, robust, and scalable. A surprisingly easy protecting group management together with a much improved end game for the formation of the trienyl side chain via a modern Stille coupling protocol also helped to make the chosen route practical. Change of a single building block allowed the synthesis to be redirected from the natural lead compound 1 toward its almost equipotent analogue 2. Isolation and reactivity profiling of pyrone tricarbonyliron complexes provide mechanistic information as well as insights into the likely origins of the observed chemoselectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.